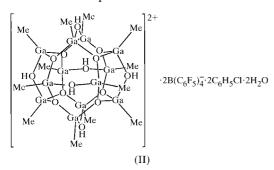
Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

A dicationic gallium-oxo-hydroxide cage compound

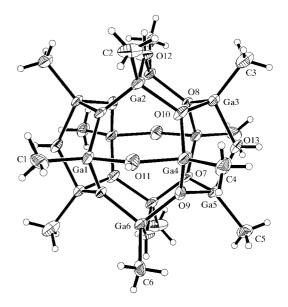
Dale C. Swenson,^a* Samuel Dagorne^b and Richard F. Jordan^b

^aDepartment of Chemistry, University of Iowa, Iowa City, IA 52242, USA, and ^bDepartment of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA


Correspondence e-mail: dale-swenson@uiowa.edu

Received 4 April 2000 Accepted 13 July 2000

The crystal structure of hexa- μ -hydroxo-dodecamethylocta- μ_3 -oxo-dodecagallium(III) bis[tetrakis(pentafluorophenyl)borate(III)] chlorobenzene disolvate dihydrate, [Ga₁₂(CH₃)₁₂- $(\mu_3-O)_8(\mu-OH)_6](C_{24}F_{20}B)_2\cdot 2C_6H_5Cl\cdot 2H_2O$, is reported. The gallium–oxo–hydroxide dication is located on an inversion center and adopts a cage structure composed of 12 fused Ga₃O₃ rings and is associated with the hydrate molecules and the [B(C₆F₅)₄]⁻ anions through hydrogen bonds and one O– $H \cdots \pi$ -ring interaction. Disordered chlorobenzene solvent molecules are also present in the crystal structure.


Comment

In recent reports, we have described the chemistry of novel cationic group 13 alkyl complexes, some of which polymerize ethylene (Coles & Jordan, 1997; Ihara *et al.*, 1998; Radzewich *et al.*, 1998, 1999; Korolev *et al.*, 1999; Dagorne *et al.*, 2000). In the course of these studies, we found that the dinuclear cationic Ga–amidinate complex [{'BuC(N'Pr)_2}GaMe_2·{'BuC-(N'Pr)_2}GaMe][B(C_6F_5)_4], (I), is hydrolyzed to the unexpected dicationic gallium–oxo–hydroxide cage compound [Ga₁₂-Me₁₂(μ_3 -O)_8(μ -OH)_6][B(C_6F_5)_4]_2·2C_6H_5Cl·2H_2O, (II), the structure of which is reported here.

Compound (II) crystallizes as $[Ga_{12}Me_{12}(\mu_3-O)_8(\mu-OH)_6]^{2+}$ dications (Fig. 1), which are associated with the hydrate

molecules and the $[B(C_6F_5)_4]^-$ anions by hydrogen bonds and one $O-H \cdots \pi$ -ring interaction. Two chlorobenzene solvate molecules are also present in the crystal structure. The dication of (II) adopts a cage structure that is composed of 12 fused six-membered Ga₃O₃ rings and is positioned on a center of symmetry. Each Ga–Me unit is coordinated to two μ_3 -O atoms and one μ -OH group. The cage structure of the $[Ga_{12}Me_{12}(\mu_3-O)_8(\mu-OH)_6]^{2+}$ dication is very similar to that of the neutral gallium–oxo–hydroxide complex $[Ga_{12}^{t}Bu_{12}(\mu_{3} O_{8}(\mu-O)_{2}(\mu-OH)_{4}$] (Barron *et al.*, 1995), which is a doubly deprotonated analog of (II). The Ga centers in (II) exhibit slightly distorted tetrahedral geometries. The O-Ga-O bond angles [average $100(3)^{\circ}$] are smaller than the ideal tetrahedral value, which is compensated for by an opening of the O-Ga-C bond angles [average 118 (3)°]. The Ga-(μ_3 -O) bond distances [average 1.87 (2) Å] are comparable to the Ga–O bond distances in gallium oxide (1.87–1.89 Å; Barron et al., 1995) and to the Ga $-(\mu_3$ -O) distances in [Ga₁₂^tBu₁₂(μ_3 - $O_{8}(\mu-O_{2}(\mu-OH)_{4}]$ (1.878–1.915 Å; Barron *et al.*, 1995) and $[Ga_6Mes_6(\mu_3-O)_4(\mu_3-OH)_4]$ ·6THF (Mes is mesityl; 1.855– 1.896 Å; Roesky et al., 1994). The μ_3 -O centers exhibit trigonal-planar geometry. The Ga $-(\mu$ -OH) bond distances [average 1.92 (2) Å] are similar to those in the dinuclear Ga cation $[({}^{i}Pr_{2}-ATI)GaMe]_{2}(\mu-OH)^{+}$ [1.941 (3) Å; Guzei *et al.*, 2000] and the neutral Ga dimer $[{CH(SiMe_3)_2}_2Ga(\mu-OH)]_2$ [average 1.96 (1) Å; Uhl et al., 1996]. The Ga $-(\mu$ -OH)-Ga bond angles [average 128.4 $(8)^{\circ}$] are nearly identical to those in $[Ga_{12}^{\prime}Bu_{12}(\mu_3-O)_8(\mu-O)_2(\mu-OH)_4]$ [average 129.1 (1) Å; Barron et al., 1995]. The Ga-C bond distances [average 1.92 (2) Å] in (II) are significantly shorter than those in $[Ga_{12}^{t}Bu_{12}(\mu_{3}-O)_{8}(\mu-O)_{2}(\mu-OH)_{4}]$ [average 1.98 (1) Å] due to the difference in cluster charge (dication versus neutral) and alkyl group size (Me versus ^tBu). The Ga-C distances in (II) are also shorter than those in $[({}^{i}Pr_{2}-ATI)GaMe]_{2}(\mu-OH)^{+}$

The $[Ga_{12}Me_{12}(\mu_3-O)_8(\mu-OH)_6]^{2+}$ dication of (II). Displacement ellipsoids are shown at the 35% probability level.

[1.941 (3) Å; Guzei et al., 2000] and (I) [average 1.950 (3) Å; Dagorne et al., 2000]. The hydrate molecules and the $[B(C_6F_5)_4]^-$ anions of (II) are hydrogen bonded to the $[Ga_{12}Me_{12}(\mu_3-O)_8(\mu-OH)_6]^{2+}$ dication through the Ga(μ -OH) groups. There are four unique hydrogen bonds (Table 2) and one $O-H\cdots\pi$ -ring interaction. The strongest interaction is between the O11-H11 group and the O90 water molecule, and can be considered as a moderately strong hydrogen bond (Jeffrey, 1997). Similar hydrogen bonds are present in $[Ga_6Mes_6(\mu_3-O)_4(\mu_3-OH)_4]$ ·6THF, in which the tetrahydrofuran molecules are hydrogen bonded to the μ_3 -OH group, and in [Me₂Ga(µ-OH)(µ-Me₂pz)GaMe₂]·HOCH₂Me₂pz (pz is pyrazolyl), in which the OH group of the HOCH₂Me₂pz molecule is hydrogen bonded to the μ -OH group (Roesky et al., 1994; Trotter et al., 1988). The second hydrogen bond in (II) is the O12-H12···F22 interaction which is longer than that in 2-fluoro-1,1,2-triphenylethanol [$F \cdots O$ 2.73 (4) Å; Desmarteau et al., 1992]. The other two hydrogen bonds are from the O90 water H atoms to F atoms of the anion. Hydrogen bonds from O-H donors to organic C-F groups are not common and may be ascribed, in the present case, to the electrostatic attraction between the $[Ga_{12}Me_{12}(\mu_3-O)_8(\mu OH_{6}^{2+}$ dication and the $[B(C_{6}F_{5})_{4}]^{-}$ anions (Desiraju & Steiner, 1999). Additionally, an $O-H\cdots\pi$ -ring interaction is present between the O13 H atom and the (C11-C16)ⁱ phenyl ring: H13... π -ring 3.11 Å and O13-H13... π -ring centroid 159° [the coordinates for the ring centroid are 0.30717, 0.56226, 0.14106; symmetry code: (i) 1 + x, y, z].

The $[B(C_6F_5)_4]^-$ anion in (II) adopts a slightly distorted tetrahedral structure. The C22-F22 bond distance is slightly longer than the other C-F bond distances and may be due to the O12-H12···F22 hydrogen bond.

Experimental

A mixture of ['BuC(N^{*i*}Pr)₂]GaMe₂ (200 mg, 0.706 mmol) and (Ph₃C)[B(C₆F₅)₄] (326 mg, 0.353 mmol) in benzene (1 ml) was stirred for 1 h at 296 K. The benzene was removed under vacuum and the resulting yellow oil was analyzed by ¹H NMR (C₆D₅Cl), which established that (I) had formed quantitatively along with 0.5 equivalents of Ph₃CMe (Dagorne *et al.*, 2000). The solvent was removed under vacuum and the resulting oil was taken up in a 1:9 C₆H₅Cl–pentane solvent mixture (1 ml). The solution was stored at 243 K for 2 d, after which time, pale-yellow crystals of (II) had formed.

Crystal data

[Ga ₁₂ (CH ₃) ₁₂ O ₈ (OH) ₆](C ₂₄ F ₂₀ B) ₂ -	Z = 1
$2C_6H_5Cl\cdot 2H_2O$	$D_x = 1.938 \text{ Mg m}^{-3}$
$M_r = 2866.32$	Mo $K\alpha$ radiation
Triclinic, P1	Cell parameters from 40
a = 13.532 (3) Å	reflections
b = 15.223(5) Å	$\theta = 11.2 - 14.9^{\circ}$
c = 12.755 (3) Å	$\mu = 3.421 \text{ mm}^{-1}$
$\alpha = 101.98 \ (2)^{\circ}$	T = 210 (2) K
$\beta = 106.91 \ (2)^{\circ}$	Prism, pale yellow
$\gamma = 83.71 \ (2)^{\circ}$	$0.34 \times 0.28 \times 0.18 \text{ mm}$
$V = 2455.7 (11) \text{ Å}^3$	

Table 1

Selected geometric parameters (Å, °).

Ga1-O8 ⁱ	1.879 (6)	Ga4-O9	1.868 (6)
Ga1–O7 ⁱ	1.898 (5)	Ga4-O10	1.884 (5)
Ga1-O11	1.901 (6)	Ga4-O11	1.925 (5)
Ga1-C1	1.915 (9)	Ga4-C4	1.945 (8)
Ga2–O7 ⁱ	1.843 (6)	Ga5-O7	1.875 (5)
Ga2-O10	1.898 (5)	Ga5-O9	1.881 (5)
Ga2-C2	1.910 (9)	Ga5-C5	1.917 (8)
Ga2-O12	1.950 (5)	Ga5-O13	1.920 (6)
Ga3-O10	1.842 (5)	Ga6–O9	1.863 (5)
Ga3-O8	1.868 (6)	Ga6–O8 ⁱ	1.876 (5)
Ga3-C3	1.879 (10)	Ga6–O12 ⁱ	1.916 (6)
Ga3-O13	1.929 (5)	Ga6-C6	1.934 (8)
O8 ⁱ -Ga1-O7 ⁱ	102.2 (2)	O9-Ga5-C5	120.1 (3)
O8 ⁱ -Ga1-O11	98.5 (2)	O7-Ga5-O13	98.1 (2)
O7 ⁱ -Ga1-O11	97.5 (2)	O9-Ga5-O13	98.0 (2)
O8 ⁱ -Ga1-C1	122.3 (3)	C5-Ga5-O13	116.7 (3)
O7 ⁱ -Ga1-C1	118.9 (3)	O9-Ga6-O8 ⁱ	104.4 (2)
O11-Ga1-C1	113.1 (4)	O9-Ga6-O12 ⁱ	98.9 (3)
O7 ⁱ -Ga2-O10	104.3 (2)	O8 ⁱ -Ga6-O12 ⁱ	97.2 (2)
O7 ⁱ -Ga2-C2	119.2 (4)	O9-Ga6-C6	115.5 (3)
O10-Ga2-C2	121.4 (4)	O8 ⁱ -Ga6-C6	123.1 (3)
O7 ⁱ -Ga2-O12	97.8 (2)	O12 ⁱ -Ga6-C6	113.6 (3)
O10-Ga2-O12	96.9 (2)	Ga2 ⁱ -O7-Ga5	120.9 (3)
C2-Ga2-O12	112.7 (3)	Ga2 ⁱ -O7-Ga1 ⁱ	119.4 (3)
O10-Ga3-O8	104.1 (2)	Ga5–O7–Ga1 ⁱ	119.7 (3)
O10-Ga3-C3	119.8 (4)	Ga3-O8-Ga6 ⁱ	120.1 (3)
O8-Ga3-C3	117.9 (3)	Ga3-O8-Ga1 ⁱ	120.7 (2)
O10-Ga3-O13	96.1 (2)	Ga6 ⁱ -O8-Ga1 ⁱ	118.9 (3)
O8-Ga3-O13	97.8 (2)	Ga6-O9-Ga4	120.0 (3)
C3-Ga3-O13	117.0 (3)	Ga6-O9-Ga5	119.4 (3)
O9-Ga4-O10	101.8 (2)	Ga4-O9-Ga5	120.5 (3)
O9-Ga4-O11	97.7 (2)	Ga3-O10-Ga4	123.5 (3)
O10-Ga4-O11	99.6 (2)	Ga3-O10-Ga2	119.8 (3)
O9-Ga4-C4	119.8 (3)	Ga4-O10-Ga2	116.6 (3)
O10-Ga4-C4	121.7 (3)	Ga1-O11-Ga4	129.0 (3)
O11-Ga4-C4	112.0 (3)	Ga6 ⁱ -O12-Ga2	127.7 (3)
O7-Ga5-O9	103.2 (2)	Ga5-O13-Ga3	128.5 (3)
O7-Ga5-C5	117.0 (3)		

Symmetry code: (i) -x, 1 - y, 1 - z.

Data collection

Enraf-Nonius CAD-4 diffract- ometer θ -2 θ scans	$R_{\text{int}} = 0.073$ $\theta_{\text{max}} = 25.0^{\circ}$ $h = -16 \rightarrow 16$ $h = -18 \rightarrow 18$
Absorption correction: ψ scans (<i>MolEN</i> ; Fair, 1990) $T_{\min} = 0.329, T_{\max} = 0.540$	$k = -18 \rightarrow 18$ $l = -15 \rightarrow 6$ 4 standard reflections
10 851 measured reflections 8067 independent reflections 4561 reflections with $I > 2\sigma(I)$	frequency: 120 min intensity decay: 15.2%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0413P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.056$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.122$	$(\Delta/\sigma)_{\rm max} = 0.009$
S = 1.110	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
8067 reflections	$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$
620 parameters	Extinction correction: SHELXL97
H-atom parameters constrained	Extinction coefficient: 0.0029 (3)

The chlorobenzene solvent molecule was disordered over two sites, with occupancies of 0.648 and 0.352 for the Cl atom. A rotatation of approximately 120° about an axis through the center and perpendicular to the plane of the benzene ring produces the second Cl-atom site from the first. Due to apparent high thermal motion, each site was modeled with two rigid groups (C-C = 1.4 Å, C-Cl =

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O11-H11····O90	0.84	1.85	2.686 (10)	179
O12-H12···F22	0.84	2.13	2.924 (7)	157
$\begin{array}{c} O90 - H90A \cdots F44^{i} \\ O90 - H90B \cdots F26^{ii} \end{array}$	0.84	2.33	3.090 (10)	150
	0.84	2.36	2.955 (10)	129

Symmetry codes: (i) -1 - x, 2 - y, 1 - z; (ii) 1 + x, y, 1 + z.

1.74 Å, C–H = 0.95 Å and all angles = 120°) of partial and equal occupancy. Two group isotropic displacement parameters were used for the C atoms, one for each site. Anisotropic displacement parameters were used for the Cl atoms, with those in close proximity (*i.e.* of the same site) constrained to be the same. The O–H bonds of the water molecule were restrained to be 0.84 Å and the H···H intramolecular distance was restrained to be 1.33 Å. The hydroxyl and water H-atom locations were supported by difference-map peaks from *SHELXL* 'omit' maps.

Data collection: *CAD-4 Operations Manual* (Enraf–Nonius, 1977); cell refinement: *CAD-4 Operations Manual*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1995); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Department of Energy.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1603). Services for accessing these data are described at the back of the journal.

References

- Barron, A. R., Landry, C. C., Harlan, C. J. & Bott, S. G. (1995). Angew. Chem. Int. Ed. Engl. 34, 1201–1202.
- Coles, M. P. & Jordan, R. F. (1997). J. Am. Chem. Soc. 119, 8125-8126.
- Dagorne, S., Guzei, I., Coles, M. P. & Jordan, R. F. (2000). J. Am. Chem. Soc. **122**, 274–289.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 202–205. Oxford Scientific Publishers.
- Desmarteau, D. D., Xu, Z.-Q. & Witz, M. (1992). J. Org. Chem. 57, 629-635.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Guzei, I., Dagorne, S. & Jordan, R. F. (2000). Acta Cryst. C56. In the press.
- Ihara, E., Young, V. G. Jr & Jordan, R. F. (1998). J. Am. Chem. Soc. 120, 8277– 8278.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, p. 12. Oxford University Press.
- Korolev, A., Guzei, I. & Jordan, R. F. (1999). J. Am. Chem. Soc. 121, 11606– 11607.
- Radzewich, C. E., Coles, M. P. & Jordan, R. F. (1998). J. Am. Chem. Soc. 120, 9384–9385.
- Radzewich, C. E., Guzei, I. & Jordan, R. F. (1999). J. Am. Chem. Soc. 121, 8673–8674.
- Roesky, H. W., Storne, J., Belgardt, T. & Stalke, D. A. (1994). Angew. Chem. Int. Ed. Engl. 33, 1244–1245.
- Sheldrick, G. M. (1995). SHELXTL. Version 5.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Trotter, J., Mar, S., Rettig, S. & Storr, A. (1988). Can. J. Chem. 66, 101-111.
- Uhl, W., Hahn, I., Koch, M. & Layh, M. (1996). Inorg. Chim. Acta, 249, 33-39.